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I. INTRODUCTION

The coupling of electromagnetic energy from one region to another

is an important problem in many areas of electromagnetic engineering.

Some examples are leakage from microwave ovens, electromagnetic penetration

into vehicles, and electromagnetic pulse interaction with shielded electronic

equipment.

Our approach is to first obtain the functional equations for the

general aperture to cavity to aperture coupling system using the equivalence

principle [1, Sec.3-5] and then to reduce these equations to a matrix

form via the method of moments [2). The various matrices are interpreted

in terms of generalized network parameters, such as voltages, currents

and admittances [2,3]. The formulation of the general problem is similar

to the formulation of Auckland and Harrington, who solved for coupling

through narrow slots in thick conducting screens [4].

Subsequently the problem is specialized to the case of electrically

small circular apertures in a cylindrical cavity of circular cross section

aod it ±s assumed that the excitation is due to a plane wave transverse electromagnetic

(TEM) to the cylinder axis. The aperture admittances are obtained using

the concept of polarizability of apertures developed by Bethe [5,6],

and the radiation terms introduced by Harrington [7]. In general an electrically

small aperture can be described in terms of a moment solution, where

at least three expansion functions must be used to express the

equivalent magnetic current. However, for simplicity, we assume that

symmetry is such that one expansion function will suffice.

The cavity region can be viewed as a short circuited cylindrical

waveguide [8]. Thus waveguide theory can be applied and the field in this

region expanded in terms of circular waveguide modes. Furthermore,

' . . " • .. • _ - . . . .1



we assume that all waveguide modes except the dominant TEll mode are in the

cutoff condition, thereby obtaining relatively simple formulas and a simple

equivalent circuit for the coupling problem.

Special attention has been paid to the case of TE (transverse electric

to the cylinder axis) oblique incidence upon the structure and to the

effects of cavity losses, both lossy material filling the cavity and

finite conductivity of the cylindrical conductor, on the transmission

coefficient.

Finally, our discussion is extended and we assume that two waveguide

modes, namely,the TE11 and the TMi1 , propagate. TM01 , TE2 1,and TE01 modes

can propagate but are not excited.

2
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II. FORMULATION OF THE PROBLEM

. - The problem to be considered is that of coupling between two half-space

regions through a cylindrical cavity. Fig. I illustrates the cross section

of the geometry of the problem. The left-hand half space (z < 0) is

called region a, the circular cavity region (0 < p < a, 0 < z < d)

is called region b, and the right-hand half space (z > d) is called region

c. A circular cavity is a cylindrical cavity of circular cross section.

The boundary common to regions a and b is called the aperture A . The

boundary common to regions b and c is called the aperture A . Regions

a,b, and c are each filled with homogeneous media of constitutive parameters

(11' ca ), (b, Fb),and (ct c ), respectively. We are not considering
ft

dissipation and therefore each p and each c is real. The excitation is due to

i i
known sources J and M , with exp(jwt) time dependence, in region a.

The equivalence principle (1, Sec. 3-51 is used to divide the original

problem into three equivalent problems, as shown in Figs. 2-4. In region

a, the field is produced by the original sources J , M , plus the equivalent

magnetic current -M I , where

m - n xE (1)
-l -a -

over the aperture region A, all radiating in the presence of a complete

conductor (aperture AI shorted). In (1), n is a unit vector normal to1 -a

Al. and E is the electric field in the aperture A, in the original problem.

In region b, the field is produced by the equivalent currents M1 , given by

(1) over A1 , and -M2 , where

-2 -E Xn 
(2)

over the aperture region A2, both radiating in the presence of a conductor

completely enclosing the cylindrical cavity region b (both apertures

shorted). In (2), the unit vector I is normal to A2 , and E is the electric

field in the aperture A2 inthe original problem. Finally, in region c we

3



VI

REGION a REGION c
PaEG PLANE CONDUCTORS

*_1'

REGION b

-- Z

APERTURE Al APERTURE A2

z
CYLINDRICAL

CAVITY

CONDUCTING WALL

z O z d

Fig. 1. Geometry of the coupling problem between two half-space
regions through a circular cavity.
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have the equivalent magnetic current M2 given by (2) over the aperture

region A2, radiating inthe presence of a complete conducting plane

(aperture A2 shorted).

The use of -M I in region a and M in region b ensures continuity of

the tangential components of the electric field across the aperture A

The use of -M 2 in region b and M 2 in region c ensures continuity of the

tangential components of the electric field across the aperture A2.

Continuity of the tangential components of H across each aperture leads to

the operator equations for the problem. The procedure is described in detail

in [3]. The result is

a b b sc
-H t (M1) - t( I+ Ht (M) = -Ht  over A1

(3)

b b
Ht -Ml H 1 t (M2~ Hct(M 2 0 over A2

where HP(M ) denotes the tangential component of H due to M radiating in
-t-q -q

sc

region p with all apertures shorted, and Ht denotes the tangential component
-t

• _ i Mi
of H due to the impressed sources J , M in region a with aperture A shorted.

Equation (3) is first solved for the equivalent magnetic currents MI and M2

and then the fields in each region can be computed from these equivalent

currents.

To obtain a solution to (3), it is convenient to use the method of

moments [2]. The procedure is described in detail in [3]. The result can

be summarized as follows: Sets of expansion functions (M n } in A1 and

{M 2n} in A2 are assumed, and the equivalent currents are expressed as

N1

!11 V Mln

n1l

(4)

N2

1!2 V2 M 2

8
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and substituted into (3). Symmetric products

<= AjB A * B ds

A1

(5)

< C, D >2 f C D ds

A2

are defined for each aperture. Sets of testing functions {W } in A and

{-2n } in A2 are defined, and equations (3) are tested 
with each Wm,

m = 1,2,....N . The result isq
a b

[YI V 1+ [Y I I + [Y 12 12 1

(6)

[Y i + [Y b ]  + [Yc] t =

[21  V1  [ 2 2  V2  22 2

where

~[YP q] = W [ mt H p ( M ) > -
[qq -t -qn q Nq X N

[YP ] = [ < m p  >  "
(7)

qr Wm -t -'rn q N X N, q #r
q r

S _Wlm' Hsc > 1 (8)
- -t i NI x

1

= [Vi)n(9)
Vq qnN (9)

The matrices [YP I are called the generalized admittances, the vector I is
qr

called the generalized source current, and the vectors V are called the
q

generalized voltages. A solution of the problem is obtained by solving the

matrix equations (6) for V I and V2, which determine the equivalent

magnetic currents M and M by (4). If a Galerkin solution is used, that

is, if {W - {M l and {W - {M n it then follows from (7) and (8) that
-In -in -2n -2n

9



[Yp I=[ <M ,9 HP(M )>
qq --qm -t -qn q N qx Nqq q

r [ -<m' -H(M_ >r (10)

-4i scI [ <M H i >

It is important to note that computation of [Y I] involves only

region a , computation of [Y b 1(Yb 1 [2] b 1,and [Y 2 involves only region b,

and computation of [Y 2 ] involves only region c. Hence, we have divided

the problem into three parts, each of which may be formulated independently,

and therefore we can use previous computations of problems having one

of these parts in common. For example,the aperture admittances of electrically

small holes for radiation into half-space will be used in the computation of

[YII] and [Y .

10
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Fig. 5. Gaometry of the coupling problem between 
two

half-space regions through small circular holes

in a circular cavity, excited by a plane wave.
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reduces to the single element

w

1 + OT (15)

Ta~a

where aml is the y-directed magnetic polarizability of a circular

.e aperture related to its radius R1 by [9)

43
O 1 = R1  (16)

and a' Ta' and Aa are the pe-meability, intrinsic impedance, and wavelength

of medium a, respectively.

In region b, the cavity part of the problem,Ml excites the TE and

TM circular waveguide modes having a modal magnetic vector with nonzero

y component at the cylinder axis. The modes excited by M are the TEIp

and TM for all P. These modes will excite only the y-directed

magnetic dipole mode of the aperture A . Hence we let

-2 = V21.-21 (17)

where M is the quasi-static current which produces the effect of
-21

a unit magnetic dipole Kk = I in the y direction, and V2 1 is a

complex coefficient to be determined.

The transverse (to z) components of the electric and magnetic fields

due to M are called E (M rl) and H t(M rl), respectively, and are expanded

in terms of waveguidemodes as [1, Sec. 8-1] and [8]

Et(M l)= Vrli(Z) ti (18)

t-rl i

and

1 ( I rli(z) hi (19)

13



Here ti and h i are the normalized modal electric and magnetic field vectors

and Vrli (z) and I rli(z) are the modal voltages and currents due to M I only,

calculated for the equivalent problem. The summations in (18) and (19)

are assumed to be over all modes, both TE and TM if necessary. The total

transverse (to z) electric and magnetic fields are then given, respectively,by

E= VIE(M - V2E( (20)

-t V11 tM111) 1t2

and

Ht VHt(M) V2 H(M 2 1 ) (21)

In the one-term Galerkin solution, the cavity matrix of admittances

becomes

-V2(0) Y cot k d -jvl(0) V21 (d) Y csc kid

[11 12 = 1 1 ki li cot k1 ]
b b csc kJ2VJl ( d ) Y cot kdY21 Y22 i-JIliO V21i d) Yi kid

(22)

where Yi is the ith waveguide mode characteristic admittance, ki is the

ith waveguide mode number, and

V1 1 1 (0) = -f f ii " ds (23)

apertA1

V2 1 i (d) = ff M2 1  h i ds (24)

apert
A2

If all waveguide modes except the dominant TE1 1 (i = 1) mode are in the cutoff

condition, then all Yi and ki are imaginary except Y1 and k Note that

there are two TE1 1 modes, but only one of them is excited. We let

14
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• 1j~Yi JBi

i (25)

ki =-Ja i

and the elements of the admittance matrix in (22) become

YIb Y b -jnl2Y I cot kid + jB1I jnlln21Yl csc kid + jg

11 b2 111 212 1 1 1
2

jn11n21Y csc kId + 3B21 -jn2171 cot kId + JB22
121 22 j

(26)

where

nil = VII(O) n2 =-V 211d) (27)

2
B11 = Vlli(O)Bi coth aid, B22 = 211(MB. coth a 1d (28)

i~l i#l

B12 =B 2 1 = l V111 (O) V2U(d) B
i csch >,,d (29)

Whenever a .d >> I (i €),csch id -O. Hence, B1 2 and B21 may be
b 1n bi#1 sh d ab

neglected in YIb2 Y21 ' respectively. This fact is evident since the fields

due to those nonpropagating modes exist primarily in the vicinity of the

apertures, and thus their contribution to the coupling between the two

apertures is negligible. However, these fields do contribute to the input

admittances and Yb of the two cavity backed apertures. As the sizes11 22

of the apertures decrease,the fields become more localized, more modes

are required for an adequate respresentation, and the proportionate

contribution of each particular mode (such as the i I mode) becomes

15



smaller. Therefore, provided the cavity sides are not close to other

boundary surfaces, the susceptances B1 1 and B22 are essentially the

same as the susceptance of an aperture in an infinite plane conducting

screen [10]. Hence we let,

3 B3
11 p R 3 22 w R3 B 2  B 21  0 (30)&I bRI

where Ib is the permeability of medium b. The matrix of admittances

Eq. (26) becomes

[Yb Yb -inl2 Yl e ot kbd + jB jnlln1Y csc kid
11l 121 jn1 1 c k1  B11  jn 1 21 1 1

(31)
b b cd2
2 1 -n 21Y cot kd + jB2 2

This is the two-port admittance matrix for a transmission line of

length d, having a characteristic admittance YI, and a propagation

constant kI , with a shunt susceptance B11 connected to its input terminal

-- through an ideal transformer of turns ratio n1 1 and a shunt suspeptance

B22 connected to its output terminal through an ideal transformer of

turns ratio n2 1. This two-port matrix is the part of the equivalent circuit

labeled region b in Fig. 6.

The characterization of region c is similar to that of region a.

Hence, one has

c 3 47(
Y22 J 3i + 3 2 (32)

c2 32 c c

where pc' Tc' and X are the permeability, intrinsic impedance, and wave-

length of medium c, respectively.

Thanks to (31), the equivalent circuit for the one term moment equation (6)

is the circuit given in Fig. 6. This circuit may be reduced to the equivalent

16
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circuit of Fig. 7 because

f 1!21l ds zf J. ll hlds

A2  A1

so that for practical considerations we may take

n n21= nil

A parameter of interest is the transfer admittance [4]

SYb Yb (Ya +Yb )Yb +Yc
I -YI2y21 - (YII + YII)(Y2 2 + Y22)Y 1 -- 2 1 1 b 1 2 2 (33)

12 V2 1  Y21

which allows one to calculate the strength of M2 = V2 1! 2 1 ' given the

excitation Ii of (14). Setting n2 1 = n1 1 in (31) and then substituting

(31) into (33), we obtain
a c

Y12 = [YI1 + Y22 + j(B11 + B22 )]cos k1d

(34)

(Ya + jBI1 )(Y 2 + jB22 )
+ J[n2Y1 + ]sin kd

n 2Y

Equation (34) can also be obtained from the equivalent circuit in Fig. 7.

Denoting the aperture admittances by

Ya G + j B a  and Yc + j B c (35)

11 22

we can write the real and imaginary parts of Y12 as given by (34) as

a +,a cG a (Bc + B2 2 ) + Gc(Ba + B1 1 )
Re(Y 1 2) ( + GC)cos k1d- 2 Y sin kid (36)

a1 c

IM(Yl2 ) = (Ba + Bc + B11 + B2 2 )cos kId

2 G (Ba + B11 )(B' + B22)

[n11Y + 2 k1 d (37)
1
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To comp]lte our formulation we need to specify the parameters re-

lated to the i = 1 (TEll) dominant mode of the circular vaveguide.

The normalized modal magnetic and electric field vectors of the TE mode

in a cylindrical coordinate system are [I, Sec. 8 -11

h I -088[1.841 j'(1.84

h -0.887[1.81 sin u + 1 (1.841 ) Cos (38)
a a -- p a a

el I X-U 
(39)

where J (x) is the Bessel function of the first kind of order 1 and Jl(X)

denotes the derivative of J1 (x) with respect to x. Tht modalwave number is

ki [W - 1 841 2 1/2 (40)
kI  [ 2 bb (-- -) ] (0

1 %b a

and its modal characteristic admittance is

Y1 = k- (41)

11

Another parameter of interest is the turns ratio ni1 . Substitution of (38)

into (23) yields

VIII(O) = 0.816 (42)

and from (27) one readily obtains

L 0.816 (43)
nil a
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IV. POWER TRANSMITTED

The power transmitted through the cavity to region c is equal to

the power dissipated in Yc of the equivalent circuit, that is
22

Ptrans = IV2 1 12 Gc (44)

In terms of the transfer admittance (33), this is

1 2
Ptrans I 121 (45)

where Ii is given by (14), YI2 by (36) end (37), and Gc = Re(Y 2). Here,

Y is given by (32).

The power incident upon the aperture A1 when the incidence is

normal is

'nc= DalHoi2 A (46)
inc a0

where H is the amplitude of the incident field, and A = R 12 is

the area of the aperture A1 . The superscript n means that the power

defined here is for normal incidence. One can define the transmission

coefficient T of the cavity to be the power transmitted through the

cavity to region c normalized with respect to the incident power (46),

that is

P
T = trans (47)

Pn
inc

21
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Now, substitution from (14), (45) and (46) into (47) results in

4G c  16r (48)

na 1Y12 12 A 3 anc c IY12

The transmission coefficient (48) depends on the cavity depth d

only through the parameter Y 1 2 " It will attain its maximum when iY 21

is minimum. For small apertures we see that Ba>>G and Bc>>G c . Hence, the

coefficients of the trigonometric terms in (37) are much larger than those

in (36), and we can minimize IYI 2 I by setting lm(Yl2 ) =0. Doing this

and retaining only dominant terms, we obtain

(Ba + BC + B1 1 + B2 2 ) 2
(B a + B1 1 )(B

c + B2 2 ) n 1

Since the right-hand side of Eq. (49) is a small negative number,a

first order approximation to resonance is

ac
(B + BC +B +B 2 2 ) 2

k ~ dB7+ - 11  22n2
1 (B a + B c)(BC + B2 111

or

a2 %

[m+ (B + B c + B I I + B 2  
ll1] "(50)

(B + BI)(BC +B 2 2 ) 2

Here the subscript "res" denotes "at resonance", X is the wavelength
1

of the dominant mode in the cavity region, and m = 1, 2, 3.....

22



Next we wish to obtain the transmission coefficient 
at resonance.I

Using the approximations

cos k d (1 )m

(51)

(B a+ B C+ B 11+B 2 2 ) -

si i 1dres (B a + B 11)(BC +1 1 2

in (36),we obtain

Re(Y 12)res m -1 (,a + GC)' (, + Bc + B11 + B22) a a + CG

(B + +B B +B 2

(52)

if we introduce the parameters

b- b

a (53)

P C - C
C Ila C a

R1 2

we obtain Tc aC12r)(5
C

C1)1/2 X a 
(56)

23



a a B c

Now substituting for Ga , Ba I Bl , B 22' G and B as obtained from (15),

(30) and (32), using the parameters defined in (53) and (54), and applying the

relations (55) and (56), we cast (52) into the form

Re(Y12)res = (_)m 3 4 + - -
12re2 I (cc)/

a a

_______ C cC_[XIb ) + PC(l+i b)] [  1 + (57)P c(1 + 11b)  X(5 b + lie )

At resonance, (48) can be written as

167 E c(OcE ) I /

T= 2 i 2(58)T res =3 r2 x 2 jRe(Y12) es 2 A ( 8

v a aa 1 2)res

and (50) as

X(ib + P) + (I + vb) R 2 1
d [m - 3.556 c C2 1 (59)

(i + 0 b ) (0' b + 'Pc)  a2X 1 2

If medium a,medium b, and medium c are the same (i.e., 'pb 0 E 1

and if R1 = R2 (i.e., X = 1), (57) reduces to

Re (Y12)res= (-I) M+ l  8X23r X (60)

a a

The resonance occurs at

3
R 3

d [m -3.556 12 (61)res AIa

and the transmission coefficient at resonance (58) becomes

3X 
2

T = (62)res 47A

24
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The transmission cross section of the system is defined as the

area for which the incident wave contains the power transmitted by the

system. It follows that the transmission cross section is equal to TA.

From (48), one obtains

4G c  16n

TA - 2 I (63)

naIYl212 
3nac A21Y 1212

If media a, b, and c are the same, one obtains from (62) that the trans-

mission cross section at resonance becomes (TA) = 3X 2/4 independentres a

of the common radius RI = R2 of the apertures. This transmission cross

section and the transmission coefficient (62) are the same as those obtained

in [7] for a small slot in a zero-thickness plane conducting screen,

resonated by a capacitor placed across its midpoint, and excited by an

incident electric field perpendicular to its axis.
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V. OBLIQUE INCIDENCE UPON THE STRUCTURE (TE CASE),AND ONE PROPAGATING

MODE IN THE CAVITY

Consider a plane wave incident upon the structure at some angle

einc in the y-z plane measured from the negative z axis, as shown in

Fig. 8. This is a TE(transverse electric to the cylinder axis) excitation.

Followingan approach similar to that of section ITT, we reduce the excitation

vector, Eq. (11), to the scalar

= HS (0) =-2H cos 0 (64)
y 0 inc

where H is the amplitude of the incident magnetic field.o

Except for the fact that I i is nowglven by (64) instead of (14), the

equivalent circuit and its parameters remain unchanged. The power transmitted

through the cavity to region c is given by (44), and in terms of the

transfer admittance by (45). Substitution of Ii from (64) into (45) results in

'. 4]Ho12' cos2 0.
p 41H c 2  G c (65)
trans jY 1 2 12

where YI2 is given by (36) and (37) and Gc = Re(Y 2 ) with Y 2 given by (32).

The transmission coefficient is defined by Eq. (47). Substituting

from (65) and (46) into (47), one obtains

4Gc 2 161T 2

2 inc 2 2 inc (66)
Ta IY 121 A 3n acXc IY121 A

Note that here Pinc' the actual power incident upon the aperture A1 , is

related to the power pn given by (46) by
inc
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Fig. 8. TE oblique incidence upon the structure.
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P pn Cos (67)
Inc Inc Inc

Eq.(66) reduces, as expected, to (48) for normal incidence (0n =In °

2.
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VI. THE EFFECT OF CAVITY LOSSES

The previous formulation may be extended to encompass the effects

of lossy material filling the cavity and of imperfect conductivity of

the circular walls of the cavity. The previous equivalent circuit still

holds except that the modal wave number of the circular waveguide dominant

mode is changed from purely real to complex with a small imaginary part

(k I = k1 - jk1 ). Nevertheless, the following two simplifying assumptions

can be made: (a) The characteristic admittance Y1 can still be considered

real, and (b) the real part of the modal wave number is equal to the

wave number of the mode in the loss-free case. These assumptions are

certainly valid for the low-loss cavity. The imaginary part of the wave

number k1 may be cast into the form

kI = a d + ac (68)

where ad  is the attenuation constant due to lossy dielectric

I it

(Fb = Cb -j b)

It

( b (1 841. 2 -/2 (69)

d 2 b [ kba

and oc is the attenuation constant due to imperfect conductor

CR

Rs 1.841)2]-/2 1.841)2 1Oc = L-- [i - - ) [( k a  + 2 (70)
b (1.841) - 1

1/2 ' 1/21
Here, = (Ib/b) , kb = W(Pbcb) and Rs= (12_)1/2 is the surface

resistance due to finite conductivity Y.

The expected effects of lossy dielectric filling the cavity are

smaller transmitted power and broader resonance curves. Similar

effects are expected if the circular conductor has finite but small

29



conductivity. Equating the attenuation constants of (69) and (70),

we obtain that a lossy conductor case behaves like a lossy

dielectric case (cb - - JEb and quality factor %d = / b/) if the

quality factor due to conductor losses, defined as,

bb 1 (71)
-c 2R 1 1 8412 1 -

S-a)+ 2%b (1.841) - 1

is equal to the quality factor due to dielectric losses Qd'
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VII. TWO PROPAGATING MODES IN THE CAVITY (TEM AND TE EXCITATIONS)

The problems to be considered are the problems of Fig. 5 (TEM

excitation) and of Fig. 8 (TE excitation) treated in sections III and

V, respectively. Here we extend our discussion and assume that two excited

waveguide modes, namely, the TE1 1 and the TM1i, propagate. The

differences appear in the admittance representation of the cavity region.

The parameters of the equivalent circuits for region a and region c

remain unchanged, and may be extracted from sections IIl and V for the

TEM and TE excitations, respectively.

If all excited waveguide modes except the TE1 1 (i = 1) and TMll (i = 2)

modes are in ti.e cutoff condition, then all Yi and ki are imaginary except YI'

k* I Y2' and k2. We let

Yi = JBi

i ' 1,2 (72)

ki 
1 -Jai

and the elements of the admittance matrix in (22) become

-b yb (O)Y cot k d -jVlll(O)V2 1 1 (d)Yl csc kld
Yb ybil 1 1il 21 1 1

"11 12 2
lcot k d +jB 1  -jV (O)V2 1 2 (d)Y2 csc k2 d+JB{2-112(O) 2 co 2d 1111 2  22 2 2 1

2

-jV1 1 1 (O)V2 1 1 (d)Y1 csc k d -jV2 1 1 (d)Y1 cot kld
b 

b

21 22 -JjV2(O)V(d)Y csc k2d+JB2 -JV 2 (d)Y cot k 2 d+JB 2

(73)
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where

B i , V 2l(O)B coth B' d; B V 2  (d)Bi coth a .d (74)
11Ili(OB co i~d B22  21 2
j~l,2 j~l 21

12 2 =l V1 1 i(O) V2 1 i(d)B i csch a.d (75)

b b

Whenever cd>l (i # 1,2),B 2 and B2 1 may be neglected in Y 2 and y 2 1 '

respectively. Using an argument similar to that of section III, we

conclude again that B~ Iand B are essentially the same as the sus-

ceptance of an aperture in an infinite plane conducting screen. Thus

BI -- 3 B 3 (76)
1 B R 3 22 3

-bR 1bR 2

Now, the matrix of admittances (73) becomes

Y b Y b iF 2 Yctkd-n 2 Y cot k djll jln eckdj s
11 Jnl1 Y1 cot kid -jn1 2 2 2 d Jnn 2 1Ylcsc kld+Jn 1 2n2 2 Y 2 csc k2d

Yb Y~ b jn1 n2 Y csc k d+jn 1 n Y csc k2 d -jn2 1 Y cot kd -jn
2 2Y cot k2 d +jB 2

21 Y22] 11 nl21 1 1l+J12n22Y2 22 22 2 2

(77)

where

*11 = V1 1 1 (0)

12= V11 2 (0)

n21 V211(d) 
(7f)

n22= -V2 1 2 (d)

This is the two- port admittance matrix for two transmission lines of length d,

having characteristic admittances Y and Yrespectively,and propagation

constants kI and k2 ,respectively, with shunt susceptances B I and B2
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connected through ideal transformers, at their input and output ports.

The equivalent circuit for this one term moment solution is given

in Fig. 9, and it may be reduced to the equivalent circuit of Fig. 10.

This last step is due to the fact that for the propagating modes we

have

M 1,ds ~ M*1h ds

A1  A2

and

f fMi~hds~ M2 1 .hds.

A1  A2

Therefore, for practical considerations, we may take n21 =nll and n2 2 = n1 2 .

The transfer admittance, Y12$ defined by Eq. (33) is obtained from

Fig. 10. That is,

y a j(B [nllY Cos kid sin k2d + nl 2 Y2 cos k2 d sin kid

12 Iyll + +'2 .i B+ 22~ 2 dsikd

+ j[(n2Yl) 2 (n2 2 (Yla + + JB 2 )]sin kid sin k d

1[ 1n122 1+ Y2) + ()+ JB

22 2 ,2 ,-1

+2jnlln 1 2 Y1 Y 2 11 - cos kid cos k2 d]j [ni 1 sin k2 d + n12 Y2 sin kdl

(79)

Once the transfer admittance is obtained from (79) the transmission

coefficient may be computed from (48) and (66) for normal and oblique

incidence, respectively.
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The parameters related to the TE (f = 1) and TM (i = 2 ) modes should

be specified. The normalized magnetic and electric field vectors of the

TE mode in a cylindrical coordinate system , as given by (38) and (39),

are

1 -0.887[ 41 i1.841 ji 1_-1 1.841 P- cos u (80)

l = [ a Jl(*a sin p + 1 a

e =  hl z (81)

Its modal wave number, as given by (40), is

= 2 - 1.841-211/2k = [w2b~ ---- (82)

1 b.b a

and its modal characteristic admittance, as given by (41), is

k1

1 WO b(83)

The normalized magnetic and electric field vectors of the TMI1 mode

in a cylindrical coodinate system are [1, See, 8-11

2 = -0.517[1 1 (3 ) sin u + 3.832 Jl( 3 8 32 ) cos u (84)
-2 P1 a a a a~(4

-- = 2 x u (85)

Its modal wave number is

k [2 0F- 3.832)2 1/2 (86)k2  [w [2b b  (a (

36
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and its modal characteristic admittance is

b

" 2 = k b (87)

Other parameters of interest are the modal voltages VI1i (0) and VI12(0).

Substituting (80) and (84) in (23), one obtains

f

0.816 (88)
VllO) = a

V (0) = 0.991 (89)112 a

Now, the turns ratios n and n12 are readily determined from (88) and

(89) by (78). We have

0.816 (90)
a

0.991 (91)
n12 a
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VIII. RESULTS AND CONCLUSIONS

The transfer admittance Y as given by (34) and the transmission

cross section as given by (63) for normal incidence and one propagating

mode in the cylindrical cavity were calculated and selected results

are presented and discussed below. In the following explanations of

results, an effort is made to outline how quantities of interest depend

upon electrical dimensions of the aperture-cavity-aperture problem, to

examine the effects of different dielectrics in the cavity region b

and in the half-space region c, and to look at the effects of lossy

material filling the cavity. Also, the influence of oblique incidence

(TE field) is mentioned. Finally, the case of two propagating modes

in the cavity is considered and examined by a numerical example.

The case of normal incidence and one propagating mode in the

cylindrical cavity is treated in Figs. 11-16. The parameters Y1 2 ' the

transfer admittance, and TA, the transmission cross section, are periodic

functions in d, the depth of the cavity. Thus, for practical consideration,

they are only plotted in the neighborhood of the first resonant thick-

ness. The permeability of all regions is that of free space and the

permittivity of the different regions is specified for the different

cases. The apertures A1 and A2 are assumed to be identical (i.e. R1 = R2 ).

Finally, from (40) and (86) one readily obtains that the TE mode is the

only propagating mode provided

1 1/2 3.832 8 1/22 () ? <(a<)383
2Ti b a 2 ) a (92)

The real and imaginary parts of Y12 are shown in Fig. 11 for

a = 0.5 X and for aperture radii of 0.03 X , 0.05 X , and 0. 1X , wherea a a a

38
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A is the wavelength in the half-space region a. As expected from (36)

~a

and (37) , the imaginary part of Y becomes dominant as the aperturef,

become electrically smaller.

The transmission cross sections (63) for the same problem are shown in

Fig. 12. For electrically small apertures TA/A
2 becomes a maximum, as
a

predicted by (61), at so-called resonant depths, which approach Ai/2, where

= 1.234A is the wavelength of the TE mode for cb = £a' Ib a' and
'l a 1

a = 0.5X . The peak value of TA/A
2 for all three cases is 10 log (3/47)=

a a

-6.221 dB, which is the resonant result implied by (62).

When the cavity is loaded with different dielectrics the transmission

resonances 3ccur at cavity depths farther from X 1 2, as given by (61).

This fact is demonstrated for a = 0.32Xa' R1 = R2 = 0.05X and c = =a'1 2a a c o

and Lb = C , 2c , and 3eo in Fig. 13a, Fig. 13b and Fig. 13c, respectively.

Note that \1 = 2.489 a 0.928A ,and 0.680a for the cases of Lb =  , 2L ,andaI a a a o

3E and thus the resonance actually occurs at different cavity depthso

measured in wavelengths in the half-space region a. The choice of the

cylindrical cavity radius a = 0.32a ensures one propagaiting mode ina

all three cases. As the material filling the cavity becomes more dense, the

transmission resonances become wider. For instance, the variation in d for

which the transmission cross section is not less than -60 dB are

0.996 d < d 1.004 d ,0.990 d < d < 1.010 d ,and 0.987d <d< 1.014 d
res res res res res res

for Cb= o Fb = 2C and Lb = 3£, respectively. Note that the magnitudes

of the peaks, however, are constant. This result is, of course, in

agreement with (58) which is independent of b'
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The effects of a different dielectric filling the half-space region c

are depicted in Fig. 14. Here the cavity radius is a = 0.5A aand the radii

of the apertures are RI = R2 = 0.05X,, As expected from (59),the position

of the resonance condition is not a function of C , and therefore isC

not affected. The peak values of the transmission cross section, however,

decay in magnitude as c becomes larger. The result is in agreement

with (57) and (58) which reduce here ( Pand X 1) to

Re(Yl2) = (- ) m + 1 41 (1 + C 3/2) (93)

3/2 2

T = c a (94)
res + 3/22A

where c = c /c as defined by (53).
C c a

If the dielectric filling the cavity is lossythe expected decrease

in the transmission cross section peaks is seen in Fig. 15, which presents

the lossless case 6b = c0 9 the lossy case cb = (1 - jO.O01)o, that is,

with Q factor = 1000,and the lossy case 6b = (1 - jO.0l)%0, that is, with

Q factor = 100. Here the cavity radius is a = 0 .5Xa . Note that the loss

does not affect the position of the resonances. The real and imaginary

parts of Y12 for this case are shown in Fig. 16. As may be observed, the

loss does not affect the imaginary part of YI2 In contrast, its real

part has changed significantly. Re(AYl2) for the case Eb = (1 - jO.01)t °

could not be shown in Fig. 16a since it varies between 19 and 29 mhos.

If the two apertures are of different size,i.e., R1 # R2 , (57) and

(58), for the case of three similar media (i.e., 1b = c = c ),

reduce, respectively, to

Re(Y1) (])M 4T - (1 + X)(1 + (95)
12 res PA2X

aa
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3X 
2

Tres 2 (96)
e [2 - (1 + X)(I + -)12 A

X

From (96) one can easily show that Tre s is maximum when 1 1, that is

when the two apertures are identical. This is in agreement with the fact

that when RI = R2 the power transmitted, at resonance, is equal to the

maximum power that can be delivered to a load by the source and its internal

admittance YIa + jBII in Fig. 7.

The effect of TE (transverse electric to the cylinder axis) oblique

incidence is shifting the transmission cross section graphs down by

10 log(cos 0 in) decibels, where 0 nc , the angle of incidence, is shown in

Fig. 8. Otherwise, TE oblique incidence is the same as TEM normal incidence.

Hence, no further detail regarding TE oblique incidence is necessary.

Finally, the case of normal incidence and two propagating modes in

the cylindrical cavity is treated in Fig. 17. The permeability and

permittivity of all regions are those of free space. The apertures Al

and A2 are identical and R1 = R2 = 0.05X a . From (86) and the fact

that the wave number of the third mode, the TE1 2 mode, is

k = (WL - (5.331.2 ]/2 (97)

3 b b  a

one readily obtains that the TEll and TM 1 modes are the only propagating

modes provided

3.832 ca 1/2 5.331 Ea 1/2
2i< b a 2 (b) X (98)

Accordingly , the cavity radius is taken to be a = 0.75X
a

The transmission cross section in Fig. 17 is plotted in the neighbor-

hood of the first two resonant depths. The transmission cross section

peaks are located at these depths, which approach, respectively, X /2
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and X2 /2, where X1 = 1.086Xa is the wavelength of the TE1 1 mode and

x2 1.718Xa is the wavelength of the TM mode. The magnitude of the

-- two peaks is the same and equal to -6.221 dB, which is the peak value

obtained when only one mode was propagating.
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IX. DISCUSSION

Electromagnetic coupling between two half-space regions through

an aperture to cavity to aperture system has been investigated and a

simple equivalent circuit has been developed for the special case of

a circular cylindrical cavity with a small circular aperture centered

in each of its end faces. It was found that for certain cavity depths

"r the system becomes resonant, thereby increasing by orders of magnitude

the power transmitted by the aperture to cavity to aperture system over

what it would transmit for other cavity depths.

It should be emphasized that, if the generalized concept of small-

aperture polarizability which adds a radiation conductance term to the

aperture admittance had not been used, infinities in the aperture fields

and power transmitted would have occurred.

The result that, at resonances,the transmission cross section of the

coupling system is independent of the size of the apertures (provided

RI = R2 ) is to be expected because similar results have been obtained

for other transmission and scattering problems. For example, the trans-

mission width of a narrow infinitely long slot in a thick conductor at

resonance is X , regardless of its actual width [4]. Moreover, the

transmission cross section obtained here is the same as that obtained

in [7] for a small slot in a zero-thickness plane conducting screen

resonated by a capacitor placed across its midpoint.

The preceding paragraph applies only to ideal loss-free problems.

Dielectric and conductor losses can significantly decrease the trans-

mission cross section at resonance. This decrease has been demonstrated

via numerical examples.
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